We are interested in hearing from people who have used these datasets to improve our products and better understand the impact of this data. Please consider taking this two-minute survey. Data for Good at Meta's program includes tools built from de-identified data on our platform, as well as tools that we develop using satellite imagery and other publicly available sources. When data is shared responsibly with the communities that need it, it can improve wellbeing and save lives.
Group Message
Use group message to communicate and collaborate with other members of your organisation.
This feature is available for datasets shared publicly or privately by your organisation. It is not visible to anyone outside of your organisation.
Updated
20 May 2019
| Dataset date: May 20, 2019-May 20, 2019
This dataset updates: As needed
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Bangladesh: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).
Updated
20 May 2019
| Dataset date: May 20, 2019-May 20, 2019
This dataset updates: As needed
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Senegal: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).
Updated
20 May 2019
| Dataset date: May 20, 2019-May 20, 2019
This dataset updates: As needed
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Réunion: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).
Updated
20 May 2019
| Dataset date: October 01, 2018-October 01, 2018
This dataset updates: As needed
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Niger: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).
Updated
20 May 2019
| Dataset date: May 20, 2019-May 20, 2019
This dataset updates: As needed
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Mauritania: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).
Updated
20 May 2019
| Dataset date: October 01, 2018-October 01, 2018
This dataset updates: As needed
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Mali: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).
Updated
20 May 2019
| Dataset date: May 20, 2019-May 20, 2019
This dataset updates: As needed
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Libya: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).
Updated
20 May 2019
| Dataset date: May 20, 2019-May 20, 2019
This dataset updates: As needed
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Egypt: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).
Updated
20 May 2019
| Dataset date: May 20, 2019-May 20, 2019
This dataset updates: As needed
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Congo: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).
Updated
20 May 2019
| Dataset date: May 20, 2018-May 20, 2018
This dataset updates: As needed
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Chad: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).
There is also a tiled version of this dataset that may be easier to use if you are interested in many countries.
Updated
8 April 2019
| Dataset date: October 01, 2018-October 01, 2018
This dataset updates: As needed
This zip file contains 28 cloud optimized tiff files that cover the continent of Africa. Each of the 28 files represents a region or area - these are not divided by country.
Notes:
The country-by-country files that were previously hosted here have been moved into separate datasets. You can find all of them here.
South Sudan, Sudan, Somalia and Ethiopia are intentionally omitted from this dataset. However, a country-level dataset for Ethiopia can be found here.
These 28 tiff files represent 2015 population estimates. However, please note that many of the country-level files include 2020 population estimates including: Angola, Benin, Botswana, Burundi, Cameroon, Cabo Verde, Cote d'Ivoire, Djibouti, Eritrea, Eswatini, The Gambia, Ghana, Lesotho, Liberia, Mozambique, Namibia, Sao Tome & Principe, Sierra Leone, South Africa, Togo, Zambia, and Zimbabwe.
Updated
19 March 2019
| Dataset date: January 24, 2019-January 24, 2019
This dataset updates: Never
Facebook has produced a model to help map global medium voltage (MV) grid infrastructure, i.e. the distribution lines which connect high-voltage transmission infrastructure to consumer-serving low-voltage distribution. The data found here are model outputs for six select African countries: Malawi, Nigeria, Uganda, DRC, Cote D’Ivoire, and Zambia. The grid maps are produced using a new methodology that employs various publicly-available datasets (night time satellite imagery, roads, political boundaries, etc) to predict the location of existing MV grid infrastructure. The model documentation and code are also available , so data scientists and planners globally can replicate the model to expand model coverage to other countries where this data is not already available. You can find the model code and documentation here: https://github.com/facebookresearch/many-to-many-dijkstra
Note: current model accuracy is approximately 70% when compared to existing ground-truthed data. Accuracy can be further improved by integrating other locally-relevant information into the model and running it again.
Resolution: geotiff is provided at Bing Tile Level 20