Lebanon

Key Figures
Refine your search: Clear all
Locations:
Tags:
More
  • 500+ Downloads
    Time Period of the Dataset [?]: January 01, 1970-December 31, 2024 ... More
    Modified [?]: 9 May 2025
    Dataset Added on HDX [?]: 21 September 2019
    This dataset updates: Never
    This dataset is part of the data series [?]: UNESCO - Education Indicators
    Education indicators for Lebanon. Contains data from the UNESCO Institute for Statistics bulk data service covering the following categories: SDG 4 Global and Thematic (made 2025 February), Other Policy Relevant Indicators (made 2025 February), Demographic and Socio-economic (made 2025 February)
  • 400+ Downloads
    Time Period of the Dataset [?]: January 01, 1960-December 31, 2024 ... More
    Modified [?]: 27 April 2025
    Dataset Added on HDX [?]: 28 June 2017
    This dataset updates: Every month
    Contains data from the World Bank's data portal covering the following topics which also exist as individual datasets on HDX: Agriculture and Rural Development, Aid Effectiveness, Economy and Growth, Education, Energy and Mining, Environment, Financial Sector, Health, Infrastructure, Social Protection and Labor, Poverty, Private Sector, Public Sector, Science and Technology, Social Development, Urban Development, Gender, Climate Change, External Debt, Trade.
  • 200+ Downloads
    Time Period of the Dataset [?]: January 01, 1975-December 31, 2024 ... More
    Modified [?]: 27 April 2025
    Dataset Added on HDX [?]: 19 November 2019
    This dataset updates: Every month
    This dataset is part of the data series [?]: World Bank - Social Protection and Labor
    Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX. The supply of labor available in an economy includes people who are employed, those who are unemployed but seeking work, and first-time job-seekers. Not everyone who works is included: unpaid workers, family workers, and students are often omitted, while some countries do not count members of the armed forces. Data on labor and employment are compiled by the International Labour Organization (ILO) from labor force surveys, censuses, establishment censuses and surveys, and administrative records such as employment exchange registers and unemployment insurance schemes.
  • 200+ Downloads
    Time Period of the Dataset [?]: January 01, 2005-December 31, 2022 ... More
    Modified [?]: 1 January 2025
    Dataset Added on HDX [?]: 29 April 2020
    This dataset updates: Every year
    This dataset is part of the data series [?]: UNDP Human Development Reports Office - Human Development Indicators
    The aim of the Human Development Report is to stimulate global, regional and national policy-relevant discussions on issues pertinent to human development. Accordingly, the data in the Report require the highest standards of data quality, consistency, international comparability and transparency. The Human Development Report Office (HDRO) fully subscribes to the Principles governing international statistical activities. The HDI was created to emphasize that people and their capabilities should be the ultimate criteria for assessing the development of a country, not economic growth alone. The HDI can also be used to question national policy choices, asking how two countries with the same level of GNI per capita can end up with different human development outcomes. These contrasts can stimulate debate about government policy priorities. The Human Development Index (HDI) is a summary measure of average achievement in key dimensions of human development: a long and healthy life, being knowledgeable and have a decent standard of living. The HDI is the geometric mean of normalized indices for each of the three dimensions. The 2019 Global Multidimensional Poverty Index (MPI) data shed light on the number of people experiencing poverty at regional, national and subnational levels, and reveal inequalities across countries and among the poor themselves.Jointly developed by the United Nations Development Programme (UNDP) and the Oxford Poverty and Human Development Initiative (OPHI) at the University of Oxford, the 2019 global MPI offers data for 101 countries, covering 76 percent of the global population. The MPI provides a comprehensive and in-depth picture of global poverty – in all its dimensions – and monitors progress towards Sustainable Development Goal (SDG) 1 – to end poverty in all its forms. It also provides policymakers with the data to respond to the call of Target 1.2, which is to ‘reduce at least by half the proportion of men, women, and children of all ages living in poverty in all its dimensions according to national definition'.
  • 20+ Downloads
    Time Period of the Dataset [?]: November 07, 2024-November 07, 2024 ... More
    Modified [?]: 19 November 2024
    Dataset Added on HDX [?]: 19 November 2024
    This dataset updates: Every six months
    This dataset provides detailed information on road surfaces from OpenStreetMap (OSM) data, distinguishing between **paved** and **unpaved** surfaces across the region. This information is based on road surface prediction derived from hybrid deep learning approach. For more information on Methods, refer to the [paper](http://arxiv.org/abs/2410.19874) Roughly 0.0517 million km of roads are mapped in OSM in this region. Based on AI-mapped estimates the share of paved and unpaved roads is approximately 0.0099 and 0.002 (in million kms), corressponding to 19.1793% and 3.8679% respectively of the total road length in the dataset region. 0.0398 million km or 76.9528% of road surface information is missing in OSM. In order to fill this gap, Mapillary derived road surface dataset provides an additional 0.0001 million km of information (corressponding to 0.2769% of total missing information on road surface) It is intended for use in transportation planning, infrastructure analysis, climate emissions and geographic information system (GIS) applications. This dataset provides comprehensive information on road and urban area features, including location, surface quality, and classification metadata. This dataset includes attributes from OpenStreetMap (OSM) data, AI predictions for road surface, and urban classifications. AI features: pred_class: Model-predicted class for the road surface, with values "paved" or "unpaved." pred_label: Binary label associated with pred_class (0 = paved, 1 = unpaved). osm_surface_class: Classification of the surface type from OSM, categorized as "paved" or "unpaved." combined_surface_osm_priority: Surface classification combining pred_label and surface(OSM) while prioritizing the OSM surface tag, classified as "paved" or "unpaved." combined_surface_DL_priority: Surface classification combining pred_label and surface(OSM) while prioritizing DL prediction pred_label, classified as "paved" or "unpaved." n_of_predictions_used: Number of predictions used for the feature length estimation. predicted_length: Predicted length based on the DL model’s estimations, in meters. DL_mean_timestamp: Mean timestamp of the predictions used, for comparison. OSM features may have these attributes(Learn what tags mean here): name: Name of the feature, if available in OSM. name:en: Name of the feature in English, if available in OSM. name:* (in local language): Name of the feature in the local official language, where available. highway: Road classification based on OSM tags (e.g., residential, motorway, footway). surface: Description of the surface material of the road (e.g., asphalt, gravel, dirt). smoothness: Assessment of surface smoothness (e.g., excellent, good, intermediate, bad). width: Width of the road, where available. lanes: Number of lanes on the road. oneway: Indicates if the road is one-way (yes or no). bridge: Specifies if the feature is a bridge (yes or no). layer: Indicates the layer of the feature in cases where multiple features are stacked (e.g., bridges, tunnels). source: Source of the data, indicating the origin or authority of specific attributes. Urban classification features may have these attributes: continent: The continent where the data point is located (e.g., Europe, Asia). country_iso_a2: The ISO Alpha-2 code representing the country (e.g., "US" for the United States). urban: Binary indicator for urban areas based on the GHSU Urban Layer 2019. (0 = rural, 1 = urban) urban_area: Name of the urban area or city where the data point is located. osm_id: Unique identifier assigned by OpenStreetMap (OSM) to each feature. osm_type: Type of OSM element (e.g., node, way, relation). The data originates from OpenStreetMap (OSM) and is augmented with model predictions using images downloaded from Mapillary in combination with the GHSU Global Human Settlement Urban Layer 2019 and AFRICAPOLIS2020 urban layer. This dataset is one of many HeiGIT exports on HDX. See the HeiGIT website for more information. We are looking forward to hearing about your use-case! Feel free to reach out to us and tell us about your research at communications@heigit.org – we would be happy to amplify your work.