Updated
24 November 2020
| Dataset date: January 01, 2000-December 31, 2020
This dataset updates: Every year
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)
-Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
-Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel,
adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674
Updated
24 November 2020
| Dataset date: January 01, 2000-December 31, 2020
This dataset updates: Every year
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below.
These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country.
They can also be visualised and explored through the woprVision App.
The remaining datasets in the links below are produced using the "top-down" method,
with either the unconstrained or constrained top-down disaggregation method used.
Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):
- Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
-Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
-Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
-Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020.
-Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national
population estimates (UN 2019).
Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
Updated
Live
| Dataset date: January 22, 2020-August 07, 2022
This dataset updates: Live
Novel Corona Virus (COVID-19) epidemiological data since 22 January 2020. The data is compiled by the Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) from various sources including the World Health Organization (WHO), DXY.cn, BNO News, National Health Commission of the People’s Republic of China (NHC), China CDC (CCDC), Hong Kong Department of Health, Macau Government, Taiwan CDC, US CDC, Government of Canada, Australia Government Department of Health, European Centre for Disease Prevention and Control (ECDC), Ministry of Health Singapore (MOH), and others. JHU CCSE maintains the data on the 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository on Github.
Fields available in the data include Province/State, Country/Region, Last Update, Confirmed, Suspected, Recovered, Deaths.
On 23/03/2020, a new data structure was released. The current resources for the latest time series data are:
time_series_covid19_confirmed_global.csv
time_series_covid19_deaths_global.csv
time_series_covid19_recovered_global.csv
---DEPRECATION WARNING---
The resources below ceased being updated on 22/03/2020 and were removed on 26/03/2020:
time_series_19-covid-Confirmed.csv
time_series_19-covid-Deaths.csv
time_series_19-covid-Recovered.csv
Updated
12 July 2020
| Dataset date: August 01, 2022-August 01, 2022
This dataset updates: Every month
OpenStreetMap exports for use in GIS applications.
This theme includes all OpenStreetMap features in this area matching:
building IS NOT NULL
Features may have these attributes:
building:levels
addr:housenumber
source
name
addr:street
office
addr:full
building
addr:city
building:materials
This dataset is one of many OpenStreetMap exports on
HDX.
See the Humanitarian OpenStreetMap Team website for more
information.
Updated
12 July 2020
| Dataset date: August 01, 2022-August 01, 2022
This dataset updates: Every month
OpenStreetMap exports for use in GIS applications.
This theme includes all OpenStreetMap features in this area matching:
amenity IS NOT NULL OR man_made IS NOT NULL OR shop IS NOT NULL OR tourism IS NOT NULL
Features may have these attributes:
beds
tourism
addr:housenumber
source
name
amenity
man_made
rooms
addr:street
shop
addr:full
opening_hours
addr:city
This dataset is one of many OpenStreetMap exports on
HDX.
See the Humanitarian OpenStreetMap Team website for more
information.
Updated
12 July 2020
| Dataset date: August 01, 2022-August 01, 2022
This dataset updates: Every month
OpenStreetMap exports for use in GIS applications.
This theme includes all OpenStreetMap features in this area matching:
waterway IS NOT NULL OR water IS NOT NULL OR natural IN ('water','wetland','bay')
Features may have these attributes:
depth
name
natural
covered
blockage
water
tunnel
width
source
layer
waterway
This dataset is one of many OpenStreetMap exports on
HDX.
See the Humanitarian OpenStreetMap Team website for more
information.
Updated
12 July 2020
| Dataset date: August 01, 2022-August 01, 2022
This dataset updates: Every month
OpenStreetMap exports for use in GIS applications.
This theme includes all OpenStreetMap features in this area matching:
highway IS NOT NULL
Features may have these attributes:
highway
surface
name
smoothness
lanes
width
source
layer
oneway
bridge
This dataset is one of many OpenStreetMap exports on
HDX.
See the Humanitarian OpenStreetMap Team website for more
information.
Updated
29 June 2020
| Dataset date: January 01, 2000-December 31, 2020
This dataset updates: Every year
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
A description of the modelling methods used for age and sex structures can be found in
Tatem et al and
Pezzulo et al. Details of the input population count datasets used can be found here, and age/sex structure proportion datasets here.
Both top-down 'unconstrained' and 'constrained' versions of the datasets are available, and the differences between the two methods are outlined
here. The datasets represent the outputs from a project focused on construction of consistent 100m resolution population count datasets for all countries of the World structured by male/female and 5-year age classes (plus a <1 year class). These efforts necessarily involved some shortcuts for consistency. The unconstrained datasets are available for each year from 2000 to 2020.
The constrained datasets are only available for 2020 at present, given the time periods represented by the building footprint and built settlement datasets used in the mapping.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00646
Updated
29 June 2020
| Dataset date: January 01, 2018-December 31, 2018
This dataset updates: Every year
The health and survival of women and their new-born babies in low income countries is a key public health priority, but basic and consistent subnational data on the number of pregnancies to support decision making has been lacking. WorldPop integrates small area data on the distribution of women of childbearing age, age-specific fertility rates, still births and abortions to map the estimated distributions of pregnancies for each 1x1km grid square across all low and middle income countries. Further details on the methods can be found in Tatem et al and James et al..
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton). 2018. Georgia 1km Pregnancies. Version 1.0 2015 estimates of numbers of pregnancies per grid square, with national totals adjusted to match national estimates on numbers of pregnancies made by the Guttmacher Institute (http://www.guttmacher.org) DOI: 10.5258/SOTON/WP00604
Updated
29 June 2020
| Dataset date: January 01, 2018-December 31, 2018
This dataset updates: Every year
The health and survival of women and their new-born babies in low income countries is a key public health priority, but basic and consistent subnational data on the number of live births to support decision making has been lacking. WorldPop integrates small area data on the distribution of women of childbearing age and age-specific fertility rates to map the estimated distributions of births for each 1x1km grid square across all low and middle income countries. Further details on the methods can be found in Tatem et al. and James et al..
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton). 2018. Georgia 1km Births. Version 1.0 2015 estimates of numbers of live births per grid square, with national totals adjusted to match UN national estimates on numbers of live births (http://esa.un.org/wpp/). DOI: 10.5258/SOTON/WP00553
Updated
3 June 2020
| Dataset date: August 01, 2022-August 01, 2022
This dataset updates: Every month
OpenStreetMap exports for use in GIS applications.
This theme includes all OpenStreetMap features in this area matching:
place IN ('isolated_dwelling','town','village','hamlet','city')
Features may have these attributes:
name
is_in
place
source
population
This dataset is one of many OpenStreetMap exports on
HDX.
See the Humanitarian OpenStreetMap Team website for more
information.
Updated
3 June 2020
| Dataset date: August 01, 2022-August 01, 2022
This dataset updates: Every month
OpenStreetMap exports for use in GIS applications.
This theme includes all OpenStreetMap features in this area matching:
aeroway IS NOT NULL OR building = 'aerodrome' OR emergency:helipad IS NOT NULL OR emergency = 'landing_site'
Features may have these attributes:
emergency
operator:type
source
name
addr:city
aeroway
addr:full
building
emergency:helipad
capacity:persons
This dataset is one of many OpenStreetMap exports on
HDX.
See the Humanitarian OpenStreetMap Team website for more
information.
Updated
3 June 2020
| Dataset date: August 01, 2022-August 01, 2022
This dataset updates: Every month
OpenStreetMap exports for use in GIS applications.
This theme includes all OpenStreetMap features in this area matching:
amenity = 'ferry_terminal' OR building = 'ferry_terminal' OR port IS NOT NULL
Features may have these attributes:
operator:type
source
name
port
amenity
addr:full
building
addr:city
This dataset is one of many OpenStreetMap exports on
HDX.
See the Humanitarian OpenStreetMap Team website for more
information.
Updated
3 June 2020
| Dataset date: August 01, 2022-August 01, 2022
This dataset updates: Every month
OpenStreetMap exports for use in GIS applications.
This theme includes all OpenStreetMap features in this area matching:
railway IN ('rail','station')
Features may have these attributes:
operator:type
source
railway
name
ele
addr:full
addr:city
layer
This dataset is one of many OpenStreetMap exports on
HDX.
See the Humanitarian OpenStreetMap Team website for more
information.
Updated
3 June 2020
| Dataset date: August 01, 2022-August 01, 2022
This dataset updates: Every month
OpenStreetMap exports for use in GIS applications.
This theme includes all OpenStreetMap features in this area matching:
healthcare IS NOT NULL OR amenity IN ('doctors','dentist','clinic','hospital','pharmacy')
Features may have these attributes:
operator:type
source
name
healthcare
amenity
healthcare:speciality
addr:full
building
addr:city
capacity:persons
This dataset is one of many OpenStreetMap exports on
HDX.
See the Humanitarian OpenStreetMap Team website for more
information.
Updated
3 June 2020
| Dataset date: August 01, 2022-August 01, 2022
This dataset updates: Every month
OpenStreetMap exports for use in GIS applications.
This theme includes all OpenStreetMap features in this area matching:
amenity IN ('kindergarten','school','college','university') OR building IN ('kindergarten','school','college','university')
Features may have these attributes:
operator:type
source
name
amenity
addr:full
building
addr:city
capacity:persons
This dataset is one of many OpenStreetMap exports on
HDX.
See the Humanitarian OpenStreetMap Team website for more
information.
Updated
3 June 2020
| Dataset date: August 01, 2022-August 01, 2022
This dataset updates: Every month
OpenStreetMap exports for use in GIS applications.
This theme includes all OpenStreetMap features in this area matching:
amenity IN ('mobile_money_agent','bureau_de_change','bank','microfinance','atm','sacco','money_transfer','post_office')
Features may have these attributes:
operator
network
source
name
amenity
addr:full
addr:city
This dataset is one of many OpenStreetMap exports on
HDX.
See the Humanitarian OpenStreetMap Team website for more
information.
Updated
20 May 2020
| Dataset date: August 28, 2019-August 09, 2022
This dataset updates: Every year
Georgia administrative level 0 (country), 1 (region, city, or autonomous republic), 2 (district or self-governing city), and 3 (community, etc.) boundaries
Vetting and live service provision by Information Technology Outreach Services (ITOS) with funding from USAID.
UPDATE
20 May 2020
The geodatabase resource was updated. The previous geodatabase was not the correct ITOS file.
These boundaries are suitable for database or GIS linkage to the Georgia - Population Statistics
Updated
10 March 2020
| Dataset date: May 19, 2017-May 19, 2017
This dataset updates: Never
The sub national INFORM model for Caucasus and Central Asia was initiated by the Regional Inter-Agency Standing Committee (IASC) Task Force for Caucasus and Central Asia and is managed by OCHA. The INFORM model is being used to support coordinated preparedness actions. Partners hope to use the model to improve cooperation between humanitarian and development actors in managing risk and building resilience across the region.
Updated
28 September 2018
| Dataset date: January 01, 1950-December 31, 2050
This dataset updates: Every year
The urban indicators data available here are analyzed, compiled and published by UN-Habitat’s Global Urban Observatory which supports governments, local authorities and civil society organizations to develop urban indicators, data and statistics. Urban statistics are collected through household surveys and censuses conducted by national statistics authorities. Global Urban Observatory team analyses and compiles urban indicators statistics from surveys and censuses. Additionally, Local urban observatories collect, compile and analyze urban data for national policy development. Population statistics are produced by the United Nations Department of Economic and Social Affairs, World Urbanization Prospects.
Updated
7 December 2016
| Dataset date: March 01, 2015-March 01, 2015
This dataset updates: Every year
According to information by the Ministry of Labour, Health and Social Affairs , 118 651 persons with disabilities are registered as recipients of state social assistance by 1 March, 2015 in Georgia that constitutes 3 percent of total population resided in Georgia.
This dataset provides a breakdown of the number of persons with disabilities by first administrative level (region), and a detailed breakdown for the districts belonging to the capital city of Tbilisi.
The provided information depicts the number of disabled persons receiving state social pension/allowance (beneficiaries) across the country. In light of this, state policy determines the total number of disabled persons by the sum of beneficiaries, which directly is connected to the actual number of disabled people living in Georgia. The actual number of disabled persons in Georgia is likely to be higher.