Key Figures
Data Completeness
3/26 Core Data 23 Datasets 8 Organisations Show legend
What is Data Completeness?
Data Completeness defines a set of core data that are essential for preparedness and emergency response. For select countries, the HDX Team and trusted partners evaluate datasets available on HDX and add those meeting the definition of a core data category to the Data Completeness board above. Please help us improve this feature by sending your feedback to hdx@un.org.
Legend:
Presence, freshness, and quality of dataset
  • Dataset fully matches criteria and is up-to-date
  • Dataset partially matches criteria and/or is not up-to-date
  • No dataset found matching the criteria
Expand
Affected People
8 Datasets
Coordination & Context
4 Datasets
Food Security & Nutrition
2 Datasets
Geography & Infrastructure
3 Datasets
Health & Education
1 Datasets
Population & Socio-economic Indicators
5 Datasets
Refine your search: Clear all
Featured:
Locations:
More
Formats:
More
Organisations:
More
Tags:
More
Licenses:
More
  • 2900+ Downloads
    Updated May 25, 2019 | Dataset date: May 25, 2019
    This dataset updates: Every day
    FTS publishes data on humanitarian funding flows as reported by donors and recipient organizations. It presents all humanitarian funding to a country and funding that is specifically reported or that can be specifically mapped against funding requirements stated in humanitarian response plans. The data comes from OCHA's Financial Tracking Service, is encoded as utf-8 and the second row of the CSV contains HXL tags.
  • 1800+ Downloads
    Updated May 23, 2019 | Dataset date: Jan 1, 2017-Apr 30, 2019
    This dataset updates: Every month
    This dataset contains agency- and publicly-reported data for events in which an aid worker was killed, kidnapped, or arrested. Categorized by country.
  • 500+ Downloads
    Updated May 23, 2019 | Dataset date: Sep 1, 2018-Apr 30, 2019
    This dataset updates: Every month
    This page provides the data published in the Attacks on Health Care Monthly News Brief. The first dataset covers events where health workers were killed, kidnapped or arrested (KKA) and incidents where health facilities or ambulances were damaged or destroyed by a perpetrator including state and non-state actors, criminals, individuals, students and other staff members. The remaining datasets include threats and incidents of violence as well as protests and other events affecting health care between September and December 2018. For a breakdown on the number of health workers killed, kidnapped or arrested (KKA), see In Harms Way dataset. All data contains incidents identified in open sources. Categorized by country.
  • 30+ Downloads
    Updated May 23, 2019 | Dataset date: Jan 1, 1999-Dec 31, 2017
    This dataset updates: Every year
    FAO statistics collates and disseminates food and agricultural statistics globally. The division develops methodologies and standards for data collection, and holds regular meetings and workshops to support member countries develop statistical systems. We produce publications, working papers and statistical yearbooks that cover food security, prices, production and trade and agri-environmental statistics.
  • 40+ Downloads
    Updated May 19, 2019 | Dataset date: May 19, 2019
    This dataset updates: Every week
    OpenStreetMap exports for use in GIS applications. This theme includes all OpenStreetMap features in this area matching: building IS NOT NULL Features may have these attributes: name building building:levels building:materials addr:full addr:housenumber addr:street addr:city office This dataset is one of many OpenStreetMap exports on HDX. See the Humanitarian OpenStreetMap Team website for more information.
  • 100+ Downloads
    Updated May 19, 2019 | Dataset date: May 19, 2019
    This dataset updates: Every week
    OpenStreetMap exports for use in GIS applications. This theme includes all OpenStreetMap features in this area matching: highway IS NOT NULL Features may have these attributes: name highway surface smoothness width lanes oneway bridge layer This dataset is one of many OpenStreetMap exports on HDX. See the Humanitarian OpenStreetMap Team website for more information.
  • 30+ Downloads
    Updated May 19, 2019 | Dataset date: May 19, 2019
    This dataset updates: Every week
    OpenStreetMap exports for use in GIS applications. This theme includes all OpenStreetMap features in this area matching: amenity IS NOT NULL OR man_made IS NOT NULL OR shop IS NOT NULL OR tourism IS NOT NULL Features may have these attributes: name amenity man_made shop tourism opening_hours beds rooms addr:full addr:housenumber addr:street addr:city This dataset is one of many OpenStreetMap exports on HDX. See the Humanitarian OpenStreetMap Team website for more information.
  • 100+ Downloads
    Updated May 19, 2019 | Dataset date: May 19, 2019
    This dataset updates: Every week
    OpenStreetMap exports for use in GIS applications. This theme includes all OpenStreetMap features in this area matching: waterway IS NOT NULL OR water IS NOT NULL OR natural IN ('water','wetland','bay') Features may have these attributes: name waterway covered width depth layer blockage tunnel natural water This dataset is one of many OpenStreetMap exports on HDX. See the Humanitarian OpenStreetMap Team website for more information.
  • 3600+ Downloads
    Updated May 19, 2019 | Dataset date: Jan 1, 1992-Apr 15, 2019
    This dataset updates: Every week
    This dataset contains Global Food Prices data from the World Food Programme covering foods such as maize, rice, beans, fish, and sugar for 76 countries and some 1,500 markets. It is updated weekly but contains to a large extent monthly data. The data goes back as far as 1992 for a few countries, although many countries started reporting from 2003 or thereafter.
  • 200+ Downloads
    Updated May 19, 2019 | Dataset date: Jan 15, 2005-Oct 15, 2018
    This dataset updates: Every week
    This dataset contains Food Prices data for Colombia. Food prices data comes from the World Food Programme and covers foods such as maize, rice, beans, fish, and sugar for 76 countries and some 1,500 markets. It is updated weekly but contains to a large extent monthly data. The data goes back as far as 1992 for a few countries, although many countries started reporting from 2003 or thereafter.
  • 500+ Downloads
    Updated May 17, 2019 | Dataset date: Jan 1, 2018-Mar 31, 2019
    This dataset updates: Every month
    This page provides the data published in the Education in Danger Monthly News Brief. The first dataset covers events where educators were killed, kidnapped or arrested (KKA) and incidents where schools were damaged or destroyed by a perpetrator including state and non-state actors, criminals, individuals, students and other staff members. The second dataset includes threats and incidents of violence as well as protests and other events affecting education in 2018. For a breakdown on the number of educators killed, kidnapped or arrested (KKA), see In Harms Way dataset. All data contains incidents identified in open sources. Categorized by country.
  • 800+ Downloads
    Updated May 16, 2019 | Dataset date: Sep 30, 2018-May 15, 2019
    This dataset updates: Every two weeks
    Valores estimados de expatriados venezolanos en países de América latina y el caribe a nivel departamental(adm1) y municipal(adm2), recolectados mediante el API de mercadeo de Facebook.
  • 10+ Downloads
    Updated May 15, 2019 | Dataset date: Apr 13, 2017
    This dataset updates: Never
    Posterior al deslizamiento de tierra que sembró el caos en la ciudad de Mocoa (Departamento de Putumayo, Colombia) el 31 de marzo de 2017 como consecuencia de las fuertes lluvias, el International Charter Space & Major Disasters fue activado bajo la petición de la Unidad Nacional para la Gestión del Riesgo de Desastres, IDEAM. En respuesta a la emergencia, UNITAR-UNOSAT ha llevado a cabo análisis visible de daño en las edificaciones causado por el deslizamiento de tierra, usando imágenes satelitales de alta resolución. Este mapa ilustra edificaciones dañadas detectadas en imágenes satelitales y la densidad de daño asociada en la ciudad de Mocoa y sus alrededores. El análisis ha sido conducido utilizando como imágenes post emergencia las adquiridas por los satélites Pleiades y GeoEye-1 el 7 y el 10 de abril de 2017 y como imágenes pre emergencia las adquiridas por los satélites WorldView-2 y WorldView-1 en las fechas del 21 de diciembre de 2016 y 26 de diciembre de 2013. El resultado del análisis conducido por UNOSAT revela un total de 1,082 edificaciones dañadas, de las cuales 736 aparecen como destruidas en la imagen o arrastradas por el deslizamiento de tierra y 346 presentan daño severo. Debido al acusado ángulo y la cobertura de nubes de las imágenes satelitales, UNITAR-UNOSAT ha utilizado orthophotos colectadas por Corpoamazonia como fuente auxiliar de validación del análisis realizado con las imágenes satélites. Las orthophotos y otros datos secundarios fueron provistos por OpenStreetMap & la Unidad de Mapeo Humanitario y UMAIC (Unidad de Manejo y Análisis de Información de Colombia), quienes también han provisto apoyo en la coordinación y gestión de la información durante esta emergencia. Por favor, note que el número de estructuras dañadas ha podido ser infra-estimado como consecuencia de los parámetros de las imágenes satelitales utilizadas. Este es un análisis preliminar que aún no ha sido validado en el terreno. Por favor, envíen sus comentarios a UNITAR-UNOSAT.
  • This map illustrates satellite-detected water bodies and inundated areas in Mocoa city, Putumayo department in Colombia as seen on Resourcesat-2 satellite imagery collected 04 April 2017. Heavy rainfall in the area caused flooding, landslides and mudflow that affected the city. UNOSAT extracted a water index from the satellite image to determine areas of standing water as well as soils with varying levels of water content (i.e. mud). Within the city of Mocoa and the current map extent, about 18 km of roads are potentially affected. About 2900 buildings are within areas which experienced floods and mudflow. It is likely that flood waters and inundation have been systematically underestimated along highly vegetated areas and within built-up urban areas because of the special characteristics of the satellite data used. This analysis has not yet been validated in the field. Please send ground feedback to UNITAR /UNOSAT.
  • 30+ Downloads
    Updated May 15, 2019 | Dataset date: Apr 12, 2017
    This dataset updates: Never
    Following a large mudflow that hit the city of Mocoa (Department of Putumayo, Colombia) on 31 March 2017 as a consequence of the heavy rains, the International Charter Space and Major Disasters has been activated upon the request of the National Unit for Disaster Risk Management (UNGRD) / Unidad Nacional para la Gestion del Riesgo de Desastres, IDEAM. In response to this emergency, UNITAR-UNOSAT has carried out satellite based damage analysis to assess (visible) building structural damage caused by mudflows. This map illustrates satellite-detected damaged structures including building damage density in Mocoa city and its surroundings. Analysis has been undertaken by using post satellite imagery acquired by Pleiades and Geoeye-1 satellites on the 7 and 10 April 2017 and pre satellite images acquired by Worldview-2 & 1 satellites on the 21 December 2016 and 26 December 2013. As result of UNOSAT satellite analysis, a total of 1,082 buildings were detected as damaged of which 736 observed as destroyed or washed out by mudflow and 346 observed as severely damaged. Due to the pronounced incident angle and cloud cover of the satellite images, UNITAR-UNOSAT has also used orthophotos collected by Corpoamazonia in order to validate satellite based analysis. Orthophotos and additional baseline data were provided by OSM Humanitarian Mapping Unit and UMAIC (Unidad de Manejo y Analisis de Informacion de Colombia) who is also providing information management coordination support for this event. Kindly note that the number of damaged structures could have been underestimated due to the parameters of the images. This analysis has not yet been validated in the field. Please send ground feedback to UNITAR-UNOSAT.
  • 10+ Downloads
    Updated May 15, 2019 | Dataset date: Apr 13, 2017
    This dataset updates: Never
    This map illustrates areas potentially affected by the mudflow, extracted from a Pleiades and GeoEye-1 satellite images acquired on the 10 April 2017 over Mocoa city and its outskirts, in Putumayo Department, Colombia. Inside some neighbourhoods of the city of Mocoa, flood waters and mudflow have receded compared with previous analysis performed by UNOSAT using an image from 4 April 2017. The situation as of 10 April 2017 reveals: 22 km of roads seem potentially affected and about 1,300 buildings are within areas which are still experiencing floods and mud flow. It is likely that flood waters and mudflow could have been systematically under or overestimated along highly vegetated areas and within built-up urban areas. This analysis has not yet been validated in the field. Please send ground feedback to UNITAR-UNOSAT.
  • El siguiente mapa ilustra el recorrido de las observaciones directas colectadas en campo por el equipo UNDAC en apoyo a la emergencia provocada por el derrame de petróleo producido el 2 de marzo de 2018 por el pozo Lizama 158 (propiedad Ecopetrol), a lo de la quebrada Lizama y Caño Muerto hasta su confluencia con el rio Sogamoso, en Barrancabermeja, Colombia. Dichas observaciones fueron tomadas durante los días 15 y 18 de abril 2018 utilizando la aplicación UN-ASIGN que permite colectar fotos georreferenciadas y su información asociada desde el terreno. UNOSAT en apoyo al equipo UNDAC, ha integrado dicha información que incluye por un lado la localización y distribución espacial de los distintos puntos de control visitados - visibles en el mapa de referencia – y a su vez las distintas fotos tomadas en terreno durante fichas visitas de control. Por favor, envíen sus comentarios a UNITAR-UNOSAT.
  • 80+ Downloads
    Updated May 3, 2019 | Dataset date: Feb 1, 2019-Apr 24, 2019
    This dataset updates: Every month
    Es un ejercicio de la Cruz Roja Colombia para recoger información sobre asentamientos de migrantes y albergues en Bogotá cruzado con datos recolectados por IMMAP mediante el API de mercadeo de Facebook que representan valores estimados de usuarios que antes vivían en venezuela y ahora su lugar de residencia es Bogotá
  • 20+ Downloads
    Updated May 3, 2019 | Dataset date: Sep 1, 2018-Dec 31, 2018
    This dataset updates: As needed
    Datos anonimizados de población migrante que recibió diferentes servicios de salud en departamentos en la forntera colombo-venezolana
  • 100+ Downloads
    Updated April 30, 2019 | Dataset date: Jan 1, 2018-Dec 31, 2018
    This dataset updates: Every year
    Herramienta de priorización geográfica del Humanitarian Needs Overview (HNO) 2019. La matriz de necesidades fue construida a partir de indicadores humanitarios sectoriales; priorización según los Equipos Humanitarios Locales (EHL) Geographic disaggregation tool of the Humanitarian Needs Overview (HNO) 2019. The needs matrix was constructed based on sectoral humanitarian indicators; Prioritization according to Local Humanitarian Teams (EHL)
  • 10+ Downloads
    Updated April 29, 2019 | Dataset date: Jan 1, 2015-Dec 31, 2018
    This dataset updates: Every six months
    Cantidad de defunciones por tipo de enfermedad (transmisible y no transmisible) en Colombia y desagregado para los municipios de Norte de Santander. Tasa de mortalidad por tipo de enfermedad.
  • 400+ Downloads
    Updated April 29, 2019 | Dataset date: Jan 1, 2015-Dec 31, 2017
    This dataset updates: Every year
    This dataset contains agency- and publicly-reported data on sexual violence and abuse against aid workers between January 2015 and December 2017.
  • Updated April 25, 2019 | Dataset date: Jan 1, 2015-Dec 31, 2018
    This dataset updates: Every six months
    Metadatos sobre la cobertura de diversos servicios en los hogares colombianos según la Gran Encuesta Integrada de Hogares (GEIH) del Departamento Administrativo Nacional de Estadística (DANE). Las cifras se presentan como tasa de cobertura con respecto a la cantidad de hogares de los departamentos de Colombia.
  • 10+ Downloads
    Updated April 25, 2019 | Dataset date: Jan 1, 2015-Dec 31, 2018
    This dataset updates: Every year
    Homicidios en Colombia desagregados por entidad territorial (departamento y municipio) y sexo. Tasa de homicidios por 100.000 habitantes.
  • Updated April 25, 2019 | Dataset date: Jan 1, 2015-Dec 31, 2018
    This dataset updates: Every year
    Hurtos en Colombia desagregados por entidad territorial (departamento y municipio) y sexo. Tasa de hurtos por 100.000 habitantes.