Key Figures
Data Completeness
13/27 Core Data 23 Datasets 15 Organisations Show legend
What is Data Completeness?
Data Completeness defines a set of core data that are essential for preparedness and emergency response. For select countries, the HDX Team and trusted partners evaluate datasets available on HDX and add those meeting the definition of a core data category to the Data Completeness board above. Please help us improve this feature by sending your feedback to hdx@un.org.
Legend:
Presence, freshness, and quality of dataset
  • Dataset fully matches criteria and is up-to-date
  • Dataset partially matches criteria and/or is not up-to-date
  • No dataset found matching the criteria
Expand
Affected People
6 Datasets
Internally-Displaced Persons
International Organization for Migration
Refugees & Persons of Concern
Returnees
OCHA DR Congo
Humanitarian Profile Locations
Casualties
Armed Conflict Location & Event Data Project (ACLED)
Coordination & Context
6 Datasets
Affected Areas
Conflict Events
Armed Conflict Location & Event Data Project (ACLED)
Humanitarian Access
Transportation Status
Damaged & Destroyed Buildings
Food Security & Nutrition
2 Datasets
Global Acute Malnutrition Rate
Severe Acute Malnutrition Rate
Food Prices
WFP - World Food Programme
Health & Education
3 Datasets
Health Facilities
World Health Organization
Global Healthsites Mapping Project
Affected Schools
Population & Socio-economic Indicators
2 Datasets
Refine your search: Clear all
Featured:
Locations:
More
Formats:
More
Organisations:
More
Tags:
More
Licenses:
More
Administrative Divisions:
  • 4600+ Downloads
    Updated December 14, 2019 | Dataset date: Dec 14, 2019
    This dataset updates: Every day
    FTS publishes data on humanitarian funding flows as reported by donors and recipient organizations. It presents all humanitarian funding to a country and funding that is specifically reported or that can be specifically mapped against funding requirements stated in humanitarian response plans. The data comes from OCHA's Financial Tracking Service, is encoded as utf-8 and the second row of the CSV contains HXL tags.
  • Updated December 14, 2019 | Dataset date: Jun 27, 2019
    This dataset updates: As needed
    This layer includes administrative boundaries level 1 as per the standard structure of the GeoEnabler project. Admin1
  • Updated December 14, 2019 | Dataset date: Apr 23, 2018
    This dataset updates: As needed
    This layer contains information about the land degradation phenomenon - by second-level administrative area - observed during the Integrated Context Analysis (ICA) run in Democratic Republic of Congo in 2017. The analysis was performed in three hot-spot provinces in the north-east part of the country (Ituri, Nord-Kivu and Sud-Kivu) because of the recent conflict outbreak and increasing food insecurity levels. Data source: HQ OSEP GIS Analysis of NASA MODIS, 2001-2012 The main indicators used for the analysis were the average ecological change observed within the time window considered and the percentage of prone-erosion district surface. Cette couche contient les données necessaires pour déterminer le niveau de dégradation de terres - par unité administrative de deuxième niveau - observé pendant l'Analyse Integrée de Contexte (AIC) executée en République Démocratique du Congo en 2017. Source des données: HQ OSEP GIS Analyse de NASA MODIS, 2001-2012 Les indicateurs principaux utilisés pour l'analyse étaient les changements moyens de couverture du sol observés entre 2001 et 2012 et la pourcentage de surface ayant une propension à l'érosion significative.
  • Updated December 14, 2019 | Dataset date: Apr 23, 2018
    This dataset updates: As needed
    This layer contains information about the landslide hazard estimated - by second-level administrative area - during the Integrated Context Analysis (ICA) run in Democratic Republic of Congo in 2017. The analysis was performed in three hot-spot provinces in the north-east part of the country (Ituri, Nord-Kivu and Sud-Kivu) because of the recent conflict outbreak and increasing food insecurity levels. Data source: UNEP/UNISDR GAR 2013. The main indicators used for the analysis were the percentage of district surface at landslide hazard, the maximum expected frequency of landslide events. Cette couche contient informations regard le risque des glissements de terraine - par unité administrative de deuxième niveau - estimé pendant l'Analyse Integrée de Contexte (AIC) exécuté en République Démocratique du Congo en 2017. L'analyse a été executée dans trois provinces critiques dans le secteur nord-est du pays (Ituri, Nord-Kivu et Sud-Kivu) en raison du récent déclenchement des conflits et des croissants niveaux d'insécurité alimentaire. Sources des données: UNEP/UNISDR GAR 2013. Les indicateurs principales utilisés pour l'analyse étaient la pourcentage de surface à risque des glissements de terraine et l'attente maximale attendue des glissements de terraine.
  • Updated December 14, 2019 | Dataset date: Nov 23, 2018
    This dataset updates: As needed
    This layer contains information about the recurrence of food insecurity - by second-level administrative area - resulting from the Emergency Food Security Assessments (EFSAs) used to integrate the food security analysis performed for the Integrated Context Analysis (ICA) run in Democratic Republic of Congo in 2017. The emergency assessments were performed in the hot-spot province of Sud-Kivu. Data source: Emergency Food Security Assessment (EFSA), 2012-2018. The main indicator used for the analysis was the recurrence of food insecurity conditions, using a threshold set to 20%. Cette couche contient les données d'une analyse de tendance de la sécurité alimentaire - par unité administrative de deuxième niveau - utilisée au fin de intégrer l'analyse employée pendant l'Analyse Integrée de Contexte (AIC) exécuté en République Démocratique du Congo en 2017. L'analyse additionelle a été executée dans trois dans la province de Sud-Kivu. Source des données: Emergency Food Security Assessment (EFSA), 2012-2018. L'indicateur principale utilisé pour l'analyse était la récurrence d'insécurité alimentaire, avec un seuil fixé à 20%.
  • Updated December 14, 2019 | Dataset date: Jun 27, 2019
    This dataset updates: As needed
    This layer includes Administrative Boundaries Level 2 as per the standard structure of the GeoEnabler project.
  • Updated December 14, 2019 | Dataset date: Apr 23, 2018
    This dataset updates: As needed
    This layer contains information about the interannual rainfall variability estimated during the Integrated Context Analysis (ICA) run in Democratic Republic of Congo in 2017. The analysis was performed in three hot-spot provinces in the north-east part of the country (Ituri, Nord-Kivu and Sud-Kivu) because of the recent conflict outbreak and increasing food insecurity levels. Data source: HQ VAM Analysis of CHIRPS Rainfall Estimates (RFE), 1981-2015. The main indicator used for the analysis was the maximum percentage of rainfall variability compared to the long-term average. Cette couche contient informations regard la variabilité interannulle des précipitations estimée pendant l'Analyse Integrée du Contexte (AIC) executée en République Démocratique du Congo en 2017. L'analyse a été executée dans trois provinces critiques dans le secteur nord-est du pays (Ituri, Nord-Kivu et Sud-Kivu) en raison du récent déclenchement des conflits et des croissants niveaux d'insécurité alimentaire. Source des donnés: HQ VAM Analyse de CHIRPS estimations des précipitations, 1981-2015. L'indicateur principal utilisé pour l'analyse était la pourcentage maxime de variabilité par rapport à la moyenne à long terme.
  • Updated December 14, 2019 | Dataset date: Apr 23, 2018
    This dataset updates: As needed
    This layer contains information about the most predominant livelihood zone - by second-level administrative area - identified during the Integrated Context Analysis (ICA) run in Democratic Republic of Congo in 2017. The analysis was performed in three hot-spot provinces in the north-east part of the country (Ituri, Nord-Kivu and Sud-Kivu) because of the recent conflict outbreak and increasing food insecurity levels. Data source: Fewsnet, 2016. Cette couche contient informations regard le zones de moyens d'existence plus prédominant - par unité administrative de deuxième niveau - identifiés pendant l'Analyse Integrée du Contexte (AIC) executée en République Démocratique du Congo en 2017. L'analyse a été executée dans trois provinces critiques dans le secteur nord-est du pays (Ituri, Nord-Kivu et Sud-Kivu) en raison du récent déclenchement des conflits et des croissants niveaux d'insécurité alimentaire. Source des données: Fewsnet, 2016.
  • Updated December 14, 2019 | Dataset date: Apr 23, 2018
    This dataset updates: As needed
    This layer contains information about the flood hazard estimated - by second-level administrative area - during the Integrated Context Analysis (ICA) run in Democratic Republic of Congo in 2017. The analysis was performed in three hot-spot provinces in the north-east part of the country (Ituri, Nord-Kivu and Sud-Kivu) because of the recent conflict outbreak and increasing food insecurity levels. Data source: UNEP/UNISDR GAR 2013, EMDAT 1990-2016. The main indicators used for the analysis were the percentage of district surface at flood hazard, the maximum expected frequency of flood events and the number of flood events recorded by EMDAT between 1990 and 2017. Cette couche contient informations regard le risque d'inondations - par unité administrative de deuxième niveau - estimé pendant l'Analyse Integrée de Contexte (AIC) exécuté en République Démocratique du Congo en 2017. L'analyse a été executée dans trois provinces critiques dans le secteur nord-est du pays (Ituri, Nord-Kivu et Sud-Kivu) en raison du récent déclenchement des conflits et des croissants niveaux d'insécurité alimentaire. Sources des données: UNEP/UNISDR GAR 2013. Les indicateurs principales utilisés pour l'analyse étaient la pourcentage de surface à risque d'inondation et la combination de l'attente maximale attendue des inondations selon UNEP/UNISDR et l'attente des inondations enregistrées par EMDAT entre 1990 et 2016.
  • Updated December 14, 2019 | Dataset date: May 17, 2017
    This dataset updates: As needed
    This dataset is an extraction of roads from OpenStreetMap data made by WFP following UNSDI-T standards. The data is updated in near-real time from OSM servers and include all latest updates. NOTE: this dataset doesn't include streets and pathways that have been published on a separate dataset (streets and pathways). More documentation on the whole process for extracting OpenStreetMap roads can be found here: http://geonode.wfp.org/documents/6823/download
  • Updated December 14, 2019 | Dataset date: Apr 23, 2018
    This dataset updates: As needed
    This layer contains information about the recurrence of food insecurity - by second-level administrative area - observed during the Integrated Context Analysis (ICA) run in Democratic Republic of Congo in 2017. The analysis was performed in three hot-spot provinces in the north-east part of the country (Ituri, Nord-Kivu and Sud-Kivu) because of the recent conflict outbreak and increasing food insecurity levels. Data source: IPC 2012-2017. The main indicator used for the analysis was the number of times that an IPC Phase 3 or above occurred per each district, classified using terciles (Low = 0-33%; Medium = 33-66%; High = 66-100%). Cette couche contient les données d'une analyse de tendance de la sécurité alimentaire - par unité administrative de deuxième niveau - employée pendant l'Analyse Integrée de Contexte (AIC) exécuté en République Démocratique du Congo en 2017. L'analyse a été executée dans trois provinces critiques dans le secteur nord-est du pays (Ituri, Nord-Kivu et Sud-Kivu) en raison du récent déclenchement des conflits et des croissants niveaux d'insécurité alimentaire. Source des données: IPC 2012-2017. L'indicateur principale utilisé pour l'analyse était le nombre de fois qu'il y a eu une phase IPC 3 ou supérieur en chaque cercle, classifiés par terciles (Faible = 0-33%; Moyen = 33-66%; Elevé = 66-100%).
  • Updated December 14, 2019 | Dataset date: Apr 23, 2018
    This dataset updates: As needed
    This layer contains information about the combined natural shock (floods and landslides) hazard estimated - by second-level administrative area - during the Integrated Context Analysis (ICA) run in Democratic Republic of Congo in 2017. The analysis was performed in three hot-spot provinces in the north-east part of the country (Ituri, Nord-Kivu and Sud-Kivu) because of the recent conflict outbreak and increasing food insecurity levels. Data source: UNEP/UNISDR GAR 2013, EMDAT 1990-2016. Cette couche contient informations regard le risque des chocs naturals combinés (inondations, et glissements de terrain) - par unité administrative de deuxième niveau - estimé pendant l'Analyse Integrée de Contexte (AIC) executé en République Démocratique du Congo en 2017. L'analyse a été executée dans trois provinces critiques dans le secteur nord-est du pays (Ituri, Nord-Kivu et Sud-Kivu) en raison du récent déclenchement des conflits et des croissants niveaux d'insécurité alimentaire. Source des données: UNEP/UNISDR GAR 2013, EMDAT 1990-2016.
  • Updated December 14, 2019 | Dataset date: Apr 23, 2018
    This dataset updates: As needed
    This layer contains information about the final classification resulting from the Integrated Context Analysis (ICA) - by second-level administrative area - run in Democratic Republic of Congo in 2017. The analysis was performed in three hot-spot provinces in the north-east part of the country (Ituri, Nord-Kivu and Sud-Kivu) because of the recent conflict outbreak and increasing food insecurity levels. The final categorization shows areas of convergence between high recurrence of food insecurity and propensity to natural shocks. Cette couche contient informations regard la classification finale résultant de l'Analyse Integrée de Contexte (AIC) executée en République Démocratique du Congo en 2017, montrant les zones de convergence de niveaux elevés de récurrence d'insécurité alimentaire et propension aux chocs naturels. L'analyse a été executée dans trois provinces critiques dans le secteur nord-est du pays (Ituri, Nord-Kivu et Sud-Kivu) en raison du récent déclenchement des conflits et des croissants niveaux d'insécurité alimentaire.
  • Updated December 14, 2019 | Dataset date: Jun 7, 2017
    This dataset updates: As needed
    This dataset is an extraction of streets and pathways from OpenStreetMap data made by WFP that follow UNSDIT standards. The data is updated in near-real time from OSM servers and include all latest updates. NOTE: this dataset doesn't include main roads that have been published on a separate dataset (main roads). More documentation on the whole process for extracting OpenStreetMap roads can be found here: http://geonode.wfp.org/documents/6823/download
  • Updated December 14, 2019 | Dataset date: Nov 28, 2017
    This dataset updates: As needed
    This layer contains the second-level administrative boundaries (districts) for DRC, validated by the IMWG on July 26th, 2017. 50 district units exist with the same name within the same province unit. They represent separate polygons for cities and their surrounding territories and are associated to unique pcodes.
  • Updated December 14, 2019 | Dataset date: Nov 28, 2017
    This dataset updates: As needed
    This layer contains the first-level administrative boundaries (provinces) for DRC, validated by the Inter-Agency Information Management Working Group on July 26th, 2017.
  • Updated December 13, 2019 | Dataset date: Jan 1, 2015-Dec 31, 2019
    This dataset updates: Every year
    This dataset shows humanitarian needs and funds received for every country and every year from 2015 to 2019
  • 600+ Downloads
    Updated December 11, 2019 | Dataset date: Nov 30, 2019
    This dataset updates: Every six months
    Projets en cours d'execution en RD Congo, ainsi que le nombre de personnes ciblées durant la période aggrégées par zone de santé et par secteur. Seuls les projets humanitaires sont repris dans ce fichier.
  • 3600+ Downloads
    Updated December 10, 2019 | Dataset date: Jan 1, 2017-Nov 30, 2019
    This dataset updates: Every month
    This dataset contains agency- and publicly-reported data for events in which an aid worker was killed, kidnapped, or arrested. Categorized by country.
  • 20+ Downloads
    Updated December 9, 2019 | Dataset date: Dec 8, 2019
    This dataset updates: Every month
    République démocratique du Congo (RDC), Établissements de santé Points + Polygons : Interactive Online Map and Tabular spreadsheet (For multipolygons lat,lon=centroid) First Column Thematic describes line Feature content : hospital, doctors, clinic, pharmacy, dentist,veterinary Objets Institutions de la santé (hopitaux, médecins, cliniques, pharmacies, dentiste) OSM amenity IN ('doctors','clinic','hospital','pharmacy','dentist') Columns :thematic, osmtype, lat (latitude), lon (longitude) osm_id (unique point id), amenity, name, name:fr, name:en, health_facility:type, beds, health_services:description, heliport, operator, operator:type, private, address, addr:housenumber, addr:street, addr:city, building, building:levels, building:material, building:condition, building:status, note, layer, other_tags OpenStreetMap data extraction from *ETL2HDX Procedures
  • 1000+ Downloads
    Updated December 9, 2019 | Dataset date: Sep 1, 2018-Nov 30, 2019
    This dataset updates: Every month
    This dataset includes incidents affecting the affecting the protection of IDPs and refugees. The data contains incidents identified in open sources. Categorized by country.
  • 20+ Downloads
    Updated December 9, 2019 | Dataset date: Dec 8, 2019
    This dataset updates: Every month
    République démocratique du Congo (RDC), Établissements éducatifs Points + Polygons : Interactive Online Map and Tabular spreadsheet (For multipolygons lat,lon=centroid) First Column Thematic describes line Feature content : school, college, university Objets Institutions de la santé (écoles, universités, collèges) Columns : thematic, osmtyhpe, lat (latitude), lon (longitude), osm_id (unique point id), amenity, school:FR, name, name:fr, name:en, operator:type, addr:housenumber, addr:street, addr:city, phone, building, source, source:data, source:date, source:name, source_ref, survey:date, note, attribution OpenStreetMap data extraction from ETL2HDX Procedures
  • 200+ Downloads
    Updated December 9, 2019 | Dataset date: Jan 1, 2018-Nov 30, 2019
    This dataset updates: Every month
    This dataset contains verified submissions from our partner agencies and publicly-reported data for events affecting the delivery of health care in the DRC.
  • 100+ Downloads
    Updated December 9, 2019 | Dataset date: Jan 1, 1999-Dec 31, 2018
    This dataset updates: Every year
    FAO statistics collates and disseminates food and agricultural statistics globally. The division develops methodologies and standards for data collection, and holds regular meetings and workshops to support member countries develop statistical systems. We produce publications, working papers and statistical yearbooks that cover food security, prices, production and trade and agri-environmental statistics.
  • 5300+ Downloads
    Updated December 9, 2019 | Dataset date: Jan 1, 1990-Nov 15, 2019
    This dataset updates: Every week
    This dataset contains Global Food Prices data from the World Food Programme covering foods such as maize, rice, beans, fish, and sugar for 76 countries and some 1,500 markets. It is updated weekly but contains to a large extent monthly data. The data goes back as far as 1992 for a few countries, although many countries started reporting from 2003 or thereafter.