Refine your search: Clear all
Featured:
Locations:
More
Formats:
More
Organisations:
More
Tags:
More
Licenses:
More
  • 3100+ Downloads
    Updated Live | Dataset date: Dec 1, 2019-Oct 27, 2020
    This dataset updates: Live
    Data Overview This repository contains spatiotemporal data from many official sources for 2019-Novel Coronavirus beginning 2019 in Hubei, China ("nCoV_2019") You may not use this data for commercial purposes. If there is a need for commercial use of the data, please contact Metabiota at info@metabiota.com to obtain a commercial use license. The incidence data are in a CSV file format. One row in an incidence file contains a piece of epidemiological data extracted from the specified source. The file contains data from multiple sources at multiple spatial resolutions in cumulative and non-cumulative formats by confirmation status. To select a single time series of case or death data, filter the incidence dataset by source, spatial resolution, location, confirmation status, and cumulative flag. Data are collected, structured, and validated by Metabiota’s digital surveillance experts. The data structuring process is designed to produce the most reliable estimates of reported cases and deaths over space and time. The data are cleaned and provided in a uniform format such that information can be compared across multiple sources. Data are collected at the time of publication in the highest geographic and temporal resolutions available in the original report. This repository is intended to provide a single access point for data from a wide range of data sources. Data will be updated periodically with the latest epidemiological data. Metabiota maintains a database of epidemiological information for over two thousand high-priority infectious disease events. Please contact us (info@metabiota.com) if you are interested in licensing the complete dataset. Cumulative vs. Non-Cumulative Incidence Reporting sources provide either cumulative incidence, non-cumulative incidence, or both. If the source only provides a non-cumulative incidence value, the cumulative values are inferred using prior reports from the same source. Use the CUMULATIVE FLAG variable to subset the data to cumulative (TRUE) or non-cumulative (FALSE) values. Case Confirmation Status The incidence datasets include the confirmation status of cases and deaths when this information is provided by the reporting source. Subset the data by the CONFIRMATION_STATUS variable to either TOTAL, CONFIRMED, SUSPECTED, or PROBABLE to obtain the data of your choice. Total incidence values include confirmed, suspected, and probable incidence values. If a source only provides suspected, probable, or confirmed incidence, the total incidence is inferred to be the sum of the provided values. If the report does not specify confirmation status, the value is included in the "total" confirmation status value. The data provided under the "Metabiota Composite Source" often does not include suspected incidence due to inconsistencies in reporting cases and deaths with this confirmation status. Outcome - Cases vs. Deaths The incidence datasets include cases and deaths. Subset the data to either CASE or DEATH using the OUTCOME variable. It should be noted that deaths are included in case counts. Spatial Resolution Data are provided at multiple spatial resolutions. Data should be subset to a single spatial resolution of interest using the SPATIAL_RESOLUTION variable. Information is included at the finest spatial resolution provided to the original epidemic report. We also aggregate incidence to coarser geographic resolutions. For example, if a source only provides data at the province-level, then province-level data are included in the dataset as well as country-level totals. Users should avoid summing all cases or deaths in a given country for a given date without specifying the SPATIAL_RESOLUTION value. For example, subset the data to SPATIAL_RESOLUTION equal to “AL0” in order to view only the aggregated country level data. There are differences in administrative division naming practices by country. Administrative levels in this dataset are defined using the Google Geolocation API (https://developers.google.com/maps/documentation/geolocation/). For example, the data for the 2019-nCoV from one source provides information for the city of Beijing, which Google Geolocations indicates is a “locality.” Beijing is also the name of the municipality where the city Beijing is located. Thus, the 2019-nCoV dataset includes rows of data for both the city Beijing, as well as the municipality of the same name. If additional cities in the Beijing municipality reported data, those data would be aggregated with the city Beijing data to form the municipality Beijing data. Sources Data sources in this repository were selected to provide comprehensive spatiotemporal data for each outbreak. Data from a specific source can be selected using the SOURCE variable. In addition to the original reporting sources, Metabiota compiles multiple sources to generate the most comprehensive view of an outbreak. This compilation is stored in the database under the source name “Metabiota Composite Source.” The purpose of generating this new view of the outbreak is to provide the most accurate and precise spatiotemporal data for the outbreak. At this time, Metabiota does not incorporate unofficial - including media - sources into the “Metabiota Composite Source” dataset. Quality Assurance Data are collected by a team of digital surveillance experts and undergo many quality assurance tests. After data are collected, they are independently verified by at least one additional analyst. The data also pass an automated validation program to ensure data consistency and integrity. NonCommercial Use License Creative Commons License Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) This is a human-readable summary of the Legal Code. You are free: to Share — to copy, distribute and transmit the work to Remix — to adapt the work Under the following conditions: Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Noncommercial — You may not use this work for commercial purposes. Share Alike — If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. With the understanding that: Waiver — Any of the above conditions can be waived if you get permission from the copyright holder. Public Domain — Where the work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license. Other Rights — In no way are any of the following rights affected by the license: Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations; The author's moral rights; Rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights. Notice — For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to this web page. For details and the full license text, see http://creativecommons.org/licenses/by-nc-sa/3.0/ Liability Metabiota shall in no event be liable for any decision taken by the user based on the data made available. Under no circumstances, shall Metabiota be liable for any damages (whatsoever) arising out of the use or inability to use the database. The entire risk arising out of the use of the database remains with the user.
  • 5500+ Downloads
    Updated October 27, 2020 | Dataset date: Oct 26, 2020
    This dataset updates: Every day
    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak. Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak. We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak. The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository. United States Data Data on cumulative coronavirus cases and deaths can be found in two files for states and counties. Each row of data reports cumulative counts based on our best reporting up to the moment we publish an update. We do our best to revise earlier entries in the data when we receive new information. Both files contain FIPS codes, a standard geographic identifier, to make it easier for an analyst to combine this data with other data sets like a map file or population data. State-Level Data State-level data can be found in the us-states.csv file. date,state,fips,cases,deaths 2020-01-21,Washington,53,1,0 ... County-Level Data County-level data can be found in the us-counties.csv file. date,county,state,fips,cases,deaths 2020-01-21,Snohomish,Washington,53061,1,0 ... In some cases, the geographies where cases are reported do not map to standard county boundaries. See the list of geographic exceptions for more detail on these. Github Repository This dataset contains COVID-19 data for the United States of America made available by The New York Times on github at https://github.com/nytimes/covid-19-data
  • 400+ Downloads
    Updated October 27, 2020 | Dataset date: Jan 1, 2019-Oct 27, 2020
    This dataset updates: Every day
    This dataset contains the number of confirmed cases, recoveries and deaths by province due to the Coronavirus pandemic in Afghanistan.
  • 5000+ Downloads
    Updated October 27, 2020 | Dataset date: Mar 10, 2020-Oct 26, 2020
    This dataset updates: Every day
    This data has been collected from various sources and is displayed in this online dashboard: http://arcg.is/uHyuO Mobile version: http://arcg.is/0q8Xfj The data is divided in two datasets: COVID-19 restrictions by country: This dataset shows current travel restrictions. Information is collected from various sources: IATA, media, national sources, WFP internal or any other. COVID-19 airline restrictions information: This dataset shows restrictions taken by individual airlines or country. Information is collected again from various sources including WFP internal and public sources. The data displayed is a collaborative effort and anybody with more accurate/updated information is highly encouraged to contact WFP GIS unit for Emergencies at the following email address: hq.gis@wfp.org
  • 100+ Downloads
    Updated October 26, 2020 | Dataset date: Oct 22, 2020
    This dataset updates: Every day
    This dataset contains the number of suspected cases, confirmed cases, and deaths by Département due to the Coronavirus pandemic in Haiti. Released by the Ministry of Public Health and Population of Haiti.
  • 100+ Downloads
    Updated October 26, 2020 | Dataset date: Oct 25, 2020
    This dataset updates: Every week
    This dataset contains the number of confirmed cases, recoveries and deaths by Governorate due to the Coronavirus pandemic in Palestine.
  • 500+ Downloads
    Updated October 25, 2020 | Dataset date: Mar 19, 2020-Oct 25, 2020
    This dataset updates: As needed
    Subnational data about Covid19 in Niger - Infected (new cases, gender), Deceased, Recovered.
  • 100+ Downloads
    Updated October 25, 2020 | Dataset date: Mar 9, 2020-Oct 20, 2020
    This dataset updates: Every week
    Burkina Faso COVID-19 situation at the city level from the beginning of the epidemic (march 2020).
  • 200+ Downloads
    Updated October 25, 2020 | Dataset date: Mar 13, 2020-Oct 24, 2020
    This dataset updates: Every week
    Subnational data about Covid19 in Mauritania - Infected (new cases, gender), Deceased, Recovered.
  • 500+ Downloads
    Updated October 25, 2020 | Dataset date: Mar 25, 2020-Oct 25, 2020
    This dataset updates: Every week
    Subnational data about Covid19 in Mali - Infected (new cases, gender if available), Deceased, Recovered.
  • 1000+ Downloads
    Updated October 25, 2020 | Dataset date: Feb 27, 2020-Oct 17, 2020
    This dataset updates: Every week
    Subnational data about Covid19 in Nigeria - Infected (new cases, gender), Deceased, Recovered.
  • 400+ Downloads
    Updated October 24, 2020 | Dataset date: Mar 9, 2020-Oct 20, 2020
    This dataset updates: Every week
    Subnational data about Covid19 in Burkina Faso - Infected (new cases, gender), Deceased, Recovered.
  • 17000+ Downloads
    Updated October 22, 2020 | Dataset date: Mar 17, 2020
    This dataset updates: Every week
    The #COVID19 Government Measures Dataset puts together all the measures implemented by governments worldwide in response to the Coronavirus pandemic. Data collection includes secondary data review. The researched information available falls into five categories: Social distancing Movement restrictions Public health measures Social and economic measures Lockdowns Each category is broken down into several types of measures. ACAPS consulted government, media, United Nations, and other organisations sources. For any comments, please contact us at info@acaps.org Please note note that some measures together with non-compliance policies may not be recorded and the exact date of implementation may not be accurate in some cases, due to the different way of reporting of the primary data sources we used.
  • 1900+ Downloads
    Updated October 21, 2020 | Dataset date: May 20, 2020-Oct 18, 2020
    This dataset updates: Every week
    This dataset contains the number of confirmed cases, deaths and recoveries by province due to the Coronavirus pandemic in Mozambique.
  • 900+ Downloads
    Updated October 20, 2020 | Dataset date: Oct 19, 2020
    This dataset updates: Every two weeks
    Understanding gender is essential to understanding the risk factors of poor health, early death and health inequities. The COVID-19 outbreak is no different. At this point in the pandemic, we are unable to provide a clear answer to the question of the extent to which sex and gender are influencing the health outcomes of people diagnosed with COVID-19. However, experience and evidence thus far tell us that both sex and gender are important drivers of risk and response to infection and disease. In order to understand the role gender is playing in the COVID-19 outbreak, countries urgently need to begin both collecting and publicly reporting sex-disaggregated data. At a minimum, this should include the number of cases and deaths in men and women. In collaboration with CNN, Global Health 50/50 began compiling publicly available sex-disaggregated data reported by national governments to date and is exploring how gender may be driving the higher proportion of reported deaths in men among confirmed cases so far. For more, please visit: http://globalhealth5050.org/covid19
  • 500+ Downloads
    Updated Live | Dataset date: Mar 13, 2020-Oct 26, 2020
    This dataset updates: Live
    This dataset contains the number of confirmed cases by state due to the Coronavirus pandemic in Venezuela.
  • 100+ Downloads
    Updated October 19, 2020 | Dataset date: Sep 24, 2020
    This dataset updates: As needed
    This dataset contains the number of confirmed cases, recoveries and deaths by locations due to the Coronavirus pandemic in Libya.
  • 400+ Downloads
    Updated October 15, 2020 | Dataset date: Mar 6, 2020-Oct 13, 2020
    This dataset updates: Every week
    Subnational data about Covid19 in Togo- Infected (new cases, gender), Deceased, Recovered.
  • 300+ Downloads
    Updated October 14, 2020 | Dataset date: Mar 12, 2020-Oct 10, 2020
    This dataset updates: Every week
    Subnational data about Covid19 in Ghana - Infected (new cases, gender), Deceased, Recovered.
  • 300+ Downloads
    Updated October 14, 2020 | Dataset date: Mar 16, 2020-Oct 11, 2020
    This dataset updates: As needed
    Subnational data about Covid19 in Gambia - Infected (new cases, gender), Deceased, Recovered.
  • 100+ Downloads
    Updated October 14, 2020 | Dataset date: Mar 16, 2020-Oct 12, 2020
    This dataset updates: Every week
    Subnational data about Covid19 in Bénin - Infected (new cases, gender), Deceased, Recovered when available
  • 60+ Downloads
    Updated October 14, 2020 | Dataset date: Mar 15, 2020-Oct 13, 2020
    This dataset updates: Every week
    Mali Covid-19 situation at the city level (adm2) from the beginning of the epidemic (march 2020).
  • 1000+ Downloads
    Updated October 9, 2020 | Dataset date: Jan 24, 2020-Oct 27, 2020
    This dataset updates: As needed
    This dataset contains the number of confirmed cases, recoveries and deaths by country and subnational region due to the Coronavirus pandemic in Europe. Since the outbreak of the COVID-19 crisis, the Joint Research Centre (JRC) has been supporting the European Commission in multidisciplinary areas to understand the COVID-19 emergency, anticipate its impacts, and support contingency planning. This data provides an overview of the monitoring in the area of the 34 UCPM Participating States plus Switzerland related to sub-national data (admin level 1) on numbers of contagious and fatalities by COVID-19, collected directly from the National Authoritative sources (National monitoring websites, when available). The sub-national granularity of the data allows to have a fit-for-purpose model to early capture the local spread and response to the COVID-19 outbreak. The data is maintained on the JRC COVID-19 Github Repository
  • 2300+ Downloads
    Updated Live | Dataset date: Jan 1, 2020-Oct 27, 2020
    This dataset updates: Live
    Governments are taking a wide range of measures in response to the COVID-19 outbreak. The Oxford COVID-19 Government Response Tracker (OxCGRT) aims track and compare government responses to the coronavirus outbreak worldwide rigorously and consistently. The OxCGRT systematically collects information on several different common policy responses governments have taken, scores the stringency of such measures, and aggregates these scores into a common Stringency Index. For more, please visit > https://www.bsg.ox.ac.uk/research/research-projects/oxford-covid-19-government-response-tracker
  • 500+ Downloads
    Updated October 7, 2020 | Dataset date: Jan 1, 2019-Oct 4, 2020
    This dataset updates: Every week
    Données hebdomadaires sur les maladies à potentiel épidémiques au Burkina Faso